
ORIGINAL PAPER

Induced chirality in fisetin upon binding to serum albumin:
experimental circular dichroism and TDDFT calculations

Iulia Matei & Sorana Ionescu & Mihaela Hillebrand

Received: 23 January 2012 /Accepted: 19 April 2012 /Published online: 15 May 2012
# Springer-Verlag 2012

Abstract Theoretical absorption and electronic circular di-
chroism (ECD) spectra predicted via time-dependent density
functional theory (TDDFT) calculations on the neutral and
four anionic species of fisetin, an achiral flavonoid, were
used to rationalize the experimental absorption and induced
circular dichroism (ICD) spectra of the ligand upon binding
to human serum albumin (HSA). On this basis, the mecha-
nism responsible for the appearance of the ICD signal was
ascribed to a distortion of the conformation of bound fisetin.
Furthermore, comparison of the simulated and experimental
spectra revealed that two fisetin species bind to HSA, name-
ly, the neutral molecule and the anion deprotonated at the
hydroxyl group in position 7, in a 1:1 ratio. The coupling of
the theoretical results with the experimental absorption and
ICD data allows identification of the flavonoid species that
bind to the protein and evaluation of their conformation in
the binding site.

Keywords Flavonoid . Human serum albumin . Induced
circular dichroism . Time-dependent density functional
calculations . Fisetin anionic species

Introduction

Quantum chemistry methods are used successfully to deter-
mine molecular structure as an auxiliary tool to experimental

spectroscopic determinations. Some of their main purposes
are to ascribe vibrational modes in the IR or Raman spectrum
[1], to determine the absolute configuration of chiral com-
pounds [2, 3] and to identify the molecular structure of reac-
tants and reaction intermediates [4, 5]. A more recent
application was to determine the geometry and species of
binding ligand in the pocket of a protein by simulating the
induced circular dichroism spectrum of the ligand observed
upon interaction [6].

Circular dichroism [7], both electronic (ECD) and vibra-
tional, has been used widely as a spectroscopic tool in
determining absolute configurations of organic compounds
[8, 9], secondary structure of (bio)polymers [10, 11] and
ligand binding parameters [12]. An interesting effect arises
when an achiral chromophore interacts with a chiral com-
pound. The chromophore becomes optically active, a phe-
nomenon referred to as induced circular dichroism (ICD)
[13]. ICD has proven to be a powerful technique for studies
of interactions of achiral organic molecules with the sur-
rounding media, from chiral solvents [14, 15] to large sys-
tems such as (bio)polymers [16–19], cyclodextrins [20–22]
and supramolecular structures like micelles [23]. The ICD
effect occurs in the light-absorbing region of the ligand and
has more features than the absorption spectrum. It is char-
acterized not only by the position and intensity of the bands
but also by a positive or negative sign [7]. These make the
ICD signal very sensitive to conformational changes of the
ligand in the restricted environment of the binding site of a
protein, and thus an appropriate technique to obtain struc-
tural information. The problem becomes more complex in
the case of easily ionizable compounds undergoing multiple
acid–base equilibria in the buffer media used for studying
ligand–protein interactions. One of the issues that must be
overcome is to determine which of the species present in the
system are effectively included in the binding pocket of the
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protein. Quantum chemistry methods can play a decisive
role in ascribing the experimental ICD spectrum of the
bound ligand to the respective species and conformation
by simulating the ECD spectrum of all the possible species
adopting several relevant conformations and choosing the
one(s) matching the experiment.

The present paper continues our earlier work on charac-
terizing the flavonoid–human serum albumin (HSA) inter-
action [24, 25]. The flavonoid chosen in this study is fisetin,
belonging to the flavonol class (Fig. 1). We have previously
characterized its interaction with HSA in terms of determining
the stoichiometry (1:1), localizing the binding site (Sudlow I),
determining the binding constant (1×10−5 M−1), energy trans-
fer efficiency and loss in α-helix content of HSA upon bind-
ing. The methods employed were steady-state and time-
resolved fluorescence and circular dichroism on the intrinsic
band of HSA [25].

In the present paper, we aimed to use theoretical density
functional theory (DFT) methods in order to rationalize the
experimental features of the absorption and ICD spectra of
fisetin and, on this basis, to determine the species that binds
to HSA and its conformation in the binding pocket. The
calculations were performed on neutral fisetin as well as on
all the possible anionic species considering several confor-
mations that can be adopted in the protein binding pocket.

The procedure consists of three steps. Firstly, a high
level theoretical characterisation of all species presumed
to exist in the system. This includes determination of
the minimum point energy, Boltzmann population, main
points on the potential energy curve (built along the
internal coordinate that determines the conformational
change upon binding) and, for the significant geometries
of each species, calculation of the UV and ECD spectra.
Secondly, the deconvolution of the UV and ECD exper-
imental spectra in the absence and presence of the
protein, in order to obtain the positions of the maxima
and the relative intensities of all components; the com-
parison of these data with the theoretically estimated
Boltzmann populations and the TDDFT calculated spec-
tra for all the presumed species allows for identification

of the binding species. In the third step, a convolution
of the overall spectrum is undertaken, considering dif-
ferent proportions for the binding species. The compar-
ison of this simulated spectrum with the experimental
one gives the ratio of the species involved in the bind-
ing process. The results obtained can be used as a more
reliable starting point in the further modeling of the
entire ligand–protein system.

Material and methods

Absorption and circular dichroism measurements

A solution of 3.5×10−5 M fisetin in ethanol:phosphate buff-
er of pH 7.4 1:9 v:v was prepared for absorption measure-
ments. Several fisetin–HSA solutions were obtained in the
range of drug to protein (d/p) molar ratio 0–1, such as to
ensure a constant 7.5×10−5 M HSA concentration. We
checked that no changes in the HSA absorption and CD
spectra occur in presence of up to 20 % ethanol. CD and
absorption spectra were recorded on a Jasco J-815 CD
spectropolarimeter at 25 °C in the wavelength range 250–
500 nm. The ICD signal of complexed fisetin, Δθ,
expressed as ellipticity in millidegrees (mdeg), was cor-
rected by subtracting at each wavelength the CD of HSA
and fisetin alone from the spectrum of the complex.

Theoretical calculations

The geometry optimization of fisetin was carried out by
density functional theory (DFT) calculations using the
B3LYP functional [26–28] and the 6-31++G(d,p) basis set
in the frame of the Gaussian03 package [29]. The solvent
(water) effect was introduced by the Polarizable Continuum
Model [30]. Calculations were performed on the neutral (N)
and four anionic species of fisetin (anions deprotonated at
the hydroxyls in positions 3, 7, 3′ and 4′, hereinafter named
A3, A7, A3′ and A4′, respectively) for which several con-
formations were obtained by modifying the torsion angle τ
(Fig. 1) in the range 0–90 °. The Gibbs free energy as given
by Gaussian03 subsequent to a vibrational analysis at the
same level of theory is used. It includes the zero-point
correction and the thermal correction for the Gibbs free
energy at 298.15 K and was used to calculate the relative
Bolzmann population of the anions.

The simulated absorption and CD spectra of the afore-
mentioned conformers were computed by time-dependent
DFT (TDDFT), B3LYP/6-31++G(d,p), and plotted employ-
ing Gabedit 2.3.5 [31], with a full width at half maximum of
15 nm. The simulated absorption spectrum of free fisetin in
solution was obtained by reconvolution of the theoretical
spectra of different conformations (with a step of 20 ° for the
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Fig. 1 Molecular structure of fisetin and numbering of ring positions
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dihedral τ), weighted by the respective Boltzmann popula-
tion. We checked that the CD spectrum for a negative τ
value is the mirror-image of that for a positive value.

Results and discussion

Experimental absorption and induced CD spectra of fisetin
upon binding to HSA

The experimental data needed in order to determine the
changes induced by binding are both the ICD and absorp-
tion spectra. As fisetin is achiral and has an ICD signal only
in the presence of HSA, the absorption spectrum of fisetin
allows one to estimate the wavelength corresponding to the
electronic transitions of free fisetin and to compare it to
those of the fisetin–HSA complex. On the other hand, the
ICD spectrum, having positive and negative bands, is more
sensitive to conformational changes of the ligand in the
binding pocket so it is more appropriate to estimate the
conformation of the bound ligand.

Fisetin has four hydroxyl groups that can each be subject
to an acido–basic equilibrium yielding an anion. The first
pKa value of fisetin is pKa107.4 [32], which is considered
to correspond to the deprotonation of the hydroxyl group in
position 7. In phosphate buffer at pH 7.4 fisetin exists both
as N and A7 forms, but the equilibrium of species can be
more complex at basic pH values (pKa209.4; the rest are
difficult to determine [32]). For neutral fisetin, the absorp-
tion band located at 375 nm is ascribed in the literature to
the electronic transitions involving the cinnamoyl molecular
fragment [12, 33]. The deconvolution of the absorption
spectrum at pH 7.4 is presented in Fig. 2a and reveals the
presence of five bands, with maxima at 263, 314, 377, 422,
469 nm corresponding to different species, neutral and an-
ionic, present in solution, that will be ascribed on grounds of
the simulated spectra.

Figure 2b presents the deconvolution of the absorption
spectrum of the 1:1 fisetin:HSA mixture. The band at

283 nm corresponds to the protein—more precisely to the
tryptophan and tyrosine residues. One can see that, upon
binding to HSA, the band at 469 nm disappears. A new band
appears at 331 nm. The other bands are shifted slightly
compared to unbound fisetin, the maxima being at 268,
307, 378 and 417 nm. Moreover, the intensity ratio of the
bands at 422 (shifted to 417) nm and 377 (378) nm
increases, while the band at 469 nm does not appear at all.
One can conclude from these features that the deprotonation
equilibrium is perturbed by the binding process and that the
neutral:anions ratio changes.

Regarding the CD spectrum, planar fisetin is optically
inactive and, due to the unhindered rotation of the chromone
and phenyl fragments about the single bond, no CD band is
observed when free in solution. However, important
changes in the CD spectrum were observed upon binding
to chiral HSA, which provides a rigid environment for the
ligand (Fig. 3a). When the d/p ratio increases from 0 to 1, an
ICD signal appears that can be explained by the following
mechanism. As fisetin is included in the binding pocket of
HSA, due to the limited space within it, rotation between the
molecular fragments is hindered and the ligand adopts a
distorted conformation. This gives rise to an asymmetry
and thus to the appearance of ICD bands. Their sign and
position are very sensitive to the molecular structure of the
bound ligand [6, 34].

We focused our attention on the ICD bands located at
wavelengths above 300 nm, as below this spectral range
uncertainties arise due to the superposition of the intrinsic
dichroic bands corresponding to the n–π* and π–π* tran-
sitions of the amide groups and aromatic residues of HSA
[35]. The ICD spectrum of the fisetin:HSA system exhibits
four bands in the absorption region of fisetin, all of which
are negative. Their maxima are at 322, 335, 378 and
411 nm, as revealed from the deconvolution in Fig. 3b,
and differ slightly from the absorption maxima of the fise-
tin:HSA mixture obtained by deconvolution (vide supra).
The differences may originate in the fact that the absorption
spectrum corresponds to both free and bound fisetin species,
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Fig. 2 The deconvoluted
absorption spectra of
a 3.5×10−5 M fisetin in ethanol:
phosphate buffer of pH 7.4 1:9
v:v, and b a 1:1 fisetin:human
serum albumin (HSA) mixture
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while only bound species have an ICD signal. The assign-
ment of these bands and evidencing of the binding fisetin
species will be made on the basis of theoretical calculations.

Time-dependent density functional theory calculations

The correlation between experimental and simulated spectra
of different possible species of fisetin in several conforma-
tions allows both the species and conformation of the bound
ligand to be identified [6]. All calculations were performed
on the isolated ligand molecule situated in a polarizable
continuum. Clearly, the ICD signal originates to a variable
extent in both the distortion of the geometry of the ligand in
the binding site and the interaction between the transition
moments of chromophores from the ligand and protein. The
present approach considers only the effect of geometry distor-
tion. The literature data on HSA binding of the flavonoid
quercetin [36] show that the asymmetry element correlated
with the occurrence of ICD bands is the dihedral around the
chromone and phenyl molecular fragments (τ in Fig. 1).

The optimized geometry of the neutral molecule has
τ015 °. As previously stated, fisetin exists at pH 7.4 as both
neutral and anionic forms in solution and the experimental
spectrum reflects this behavior. This prompted us to optimize
all possible monoanionic forms and simulate their absorption
and electronic CD (ECD) spectra corresponding to different
conformations. Table 1 presents the relative Gibbs’ free

energy of the anions, together with the dihedrals τ for the
optimized conformation. The most stable anions correspond
to the deprotonation of the hydroxyl in position 4′ or 7, which,
from the calculated Boltzmann populations, appear as the only
ones present in solution. Nonetheless, anion 4′ exhibits two
conformers, the most stable one, 4′a, and another one
13.15 kJ mol−1 higher, 4′b, that differ in the orientation of
the hydroxylic hydrogen at position 3′. This being free to
rotate, it is reasonable to think that the population of this anion
is Boltzmann averaged between these two conformers.

The intensity and position of the simulated absorption
and ECD bands depend strongly on the magnitude of the
torsion τ. Figure 4a shows the simulated absorption spectra
of N, A7 and A4′, obtained by the reconvolution of the
Boltzmann averaged spectra of different conformers (for
their individual spectra see Fig. S2 in the Online Resource).
The calculations predict three transitions at 378 nm, 296 and
269 nm for the optimized geometry of the neutral molecule,
in good agreement with the deconvolution of the experi-
mental spectrum of fisetin in pH 7.4 buffer regarding both
the positions (377, 314, 263 nm) and relative intensities of
the absorption bands. They are of π–π* character. The band
at 378 nm corresponds mainly to the homo–lumo transition,
the orbitals involved being localized mostly on the cinna-
moyl fragment (see Fig. S1 in the Online Resource). The
band at 296 nm corresponds to a homo-2-lumo transition,
located on the benzoyl fragment and the one at 269 nm to
homo–lumo+1, delocalized on the entire molecule. The
anions that best correlate with the position of the experi-
mental bands found by deconvolution (Fig. 2a) are A7
(410 nm) and A4′ (462 nm), i.e., the most stable ones. The
oscillator strengths for these three bands are 0.55, 0.37 and
0.79, respectively. When comparing them to the absorbance
in the experimental spectrum at the same wavelength (0.48,
0.44 and 0.10), the molar ratio in solution can be estimated
as about N:A7:A4′00.40:0.55:0.05. Therefore, although the
most stable anions are A4′ and then A7, 1.47 kJ mol−1

higher, the correlation between the experimental and theo-
retical spectra reveals that A7 is predominant in solution and
A4′ is present in small amounts. This means that the DFT
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Fig. 3 a Induced circular
dichroism (ICD) spectra of the
fisetin:HSA system at different
d/p values in the range 0–1;
[HSA]07.5×10−5 M in pH 7.4
buffer; dotted spectrum:
[fisetin]07.5×10−5 M in
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1:4 v:v. b Deconvolution of the
spectrum at d/p01

Table 1 Relative Gibbs’ free energy of the anionic forms of fisetin and
the respective relative Boltzmann populations

Species τ (deg) Grel (kJ/mol) Relative populationsa

A7 15 1.47 0.55

A4′a 9 0.00 1.00

A4’b 9 13.15 0.01

A3 1 20.19 0.00

A3′ 20 11.82 0.01

a From the calculated Gibbs free energies, relative to the most stable
anion, considered 1
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calculated populations are only in qualitative agreement
with the experimental data, because they predict the
species present in solution, but not their real proportion. This
most probably originates in the well known errors in the
calculated free energy and oscillator strength yielded by
DFT methods [37, 38].

The ECD spectra for the neutral and all the anionic
species (see Fig. S3 in the Online Resource for several
conformations) were calculated as a function of τ. In gen-
eral, when τ increases the bands shift bathochromically,
except for A4′, the intensity increases, reaches a maximum
for the most asymmetric conformations (40–60 °) and then
decreases, while the sign of the bands is generally not
changed. These spectra can be compared to the experimental
ICD spectrum in presence of HSA at d/p01 that was previ-
ously deconvoluted in Fig. 3b. Figure 4b presents the spec-
tra of the conformations that best match the wavelength of
the experimental bands. Their τ values are 30–40 °, in agree-
ment with literature docking results on the conformation that
flavonoids adopt when bound to a protein [12, 39]. One can
observe that the species presenting bands only in the range of
300–425 nm are N and A7. The other anions are predicted to
have maxima at wavelengths longer than 450 nm, where
bound fisetin has no signal. So, most probably, the binding
species are N and A7 and we aim to estimate the ratio in which
they bind.

Figure 5 shows the shape of the simulated ECD spec-
trum of previously chosen conformations of N and A7
fisetin at several molar ratios. The position and intensity
of the experimental ICD bands for the 1:1 fisetin:HSA
mixture, relative to that at 385 nm, are also depicted as
vertical lines. The molar ratio that best correlates with the
experimental intensities is 0.5:0.5 (blue). Thus, N and A7
bind to the protein in a 1:1 proportion. There is no obvious
feature to make one suppose that A4′ binds to HSA as well.
It is possible that the hydroxylic proton at position 3′ is
involved in a hydrogen bond with an amino acid residue,
thus the most stable A4′a reverts to the 13.15 kJ mol−1

higher in energy A4′b, which then converts to the more
stable A7 or N.

Although the calculations neglect the intermolecular in-
teraction of the flavonoid with HSA, they give a reasonable
explanation for the observation of the ICD signal and offer
valuable insight on the species and conformation of the
flavonoid that binds to the protein, which are not always
those in solution. This method that combines experimental
ICD data for a drug binding to a protein with theoretical
calculations for the isolated molecule can be extended for
other protein–ligand systems.

Conclusions

The correlation between the experimental and simulated
spectra reveals that fisetin exists as neutral and two anionic
species in buffered solution at pH 7.4. The calculated wave-
lengths for the electronic transitions of the most stable
anionic species are close to the experimental values found
by deconvolution. In the presence of HSA, the shape of the
absorption spectrum changes, but it is difficult to ascertain
the bound species. This can be done with the aid of the ICD
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spectrum of fisetin, which corresponds to the bound species
exclusively. A comparison with the simulated ECD spec-
trum of mixtures of neutral and anion 7 fisetin in different
molar ratios reveals that these most probably bind in a 1:1
proportion. Moreover, their geometry is twisted with a di-
hedral of 30–40 °. This method can give valuable structural
information on the binding of drugs to proteins.
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